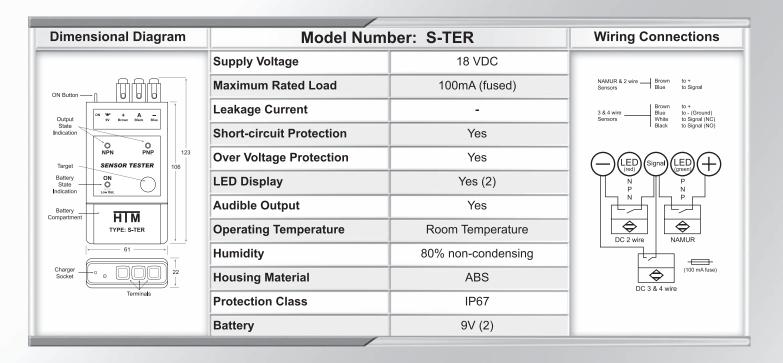


SENSOR ACCESSORIES

WWW.HTMSENSORS.COM

SENSOR TESTER

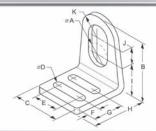


Features

- Wiring instructions printed on case
- * Easy connect, spring-loaded, wire terminals
- * Dual operation indicators: LED and buzzer
- Power supply from a single 9V battery (supplied)
- * Built-in steel target for checking inductive sensors
- Automatic switch off after approx. 30 sec. of non-use

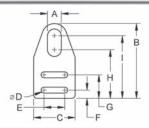
Full-function Sensor Tester

Pocket-sized sensor tester with push-type terminals makes wire connections quick and easy. Allows for fast field checks, troubleshooting and/or demonstration of 10-30 VDC sensors with a maximum sensor current drain of 50mA. 2, 3, or 4-wire and NAMUR type sensor built to DIN 19234. Confirms operation of inductive, photoelectric, capacitive and ultrasonic sensors.



STEEL MOUNTING BRACKETS

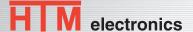
Right Angle Brackets


Model #	Α	В	С	D	E	F	G	Н	I	J	K
HRAB-08	8.10 (0.319)	25.4 (1.00)	31.8 (1.25)		15.9 (0.625)	7.14 (0.281)	19.0 (0.749)	31.8 (1.25)	9.83 (0.387)	7.62 (0.300)	7.95 (0.313)
HRAB-12	12.1 (0.476)	38.1 (1.50)	38.1 (1.50)	5.54 (0.218)	19.1 (0.750)	7.92	22.2	34.8	14.0 (0.555)	12.7 (0.500)	11.4 (0.450)
HRAB-18	18.1 (0.713)	50.8 (2.00)	44.5 (1.75)		25.4 (1.00)	(0.312)	(0.875)	(1.37)	19.1 (0.750)	15.9 (0.625)	15.9 (0.625)
HRAB-30	30.1 (0.319)	63.5 (2.50)	57.2 (2.25)	7.13 (0.281)	34.8 (1.37)	10.3 (0.406)	30.9 (1.22)	44.5 (1.75)	23.0 (0.907)	19.1 (0.750)	21.4 (0.843)

Notes

- 1) Dimensions are in mm(inch).
- 2) Models listed are zinc-plated carbon steel. For 303 stainless steel add "SS" after each model number, for example; HRAB-12-SS.
- 3) Material thickness on 8-18mm models is 1.78(.070), 30mm is 2.16(.095)
- 4) HTM will gladly design, quote and or stock your custom requirements.

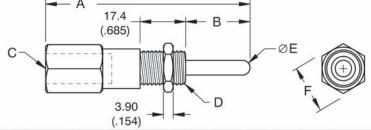
Flat Brackets



Model #	Α	В	С	D	E	F	G	Н	
HFAB-08	8.10 (0.319)	54.3 (2.14)	31.7 (1.25)		15.9 (0.625)	7.14 (0.281)	19.0 (0.749)	38.7 (1.25)	46.2 (0.387)
HFAB-12	12.1 (0.476)	69.9 (2.75)	38.1 (1.50)	5.60 (0.220)	19.1 (0.750)	7.92	22.2	45.7 (1.80)	58.4 (2.30)
HFAB-18	18.1 (0.713)	82.6 (3.25)	44.5 (1.75)		25.4 (1.00)	(0.312)	(0.875)	50.8 (2.00)	66.7 (2.63)
HFAB-30	30.1 (0.319)	105 (4.11)	57.2 (2.25)	7.24 (0.285)	34.8 (1.37)	10.3 (0.406)	30.9 (1.22)	49.0 (1.93)	61.2 (2.14)

Notes

- 1) Dimensions are in mm(inch).
- 2) Models listed are zinc-plated carbon steel. For 303 stainless steel add "SS" after each model number, for example; HRAB-12-SS.
- 3) Material thickness on 8-18mm models is 1.78(.070), 30mm is 2.16(.095)


CONTACT SENSOR PROBES

Convert Standard Proximity Sensors Into Probe-style Switches. Features

- Accurate and compact sensing
- * Ball-end rod reaches into tight areas
- * Accepts standard shielded 8 or 12mm sensors
- * Spring-loaded probe with Oilite® bearing
- * Wide variety of lengths and diameters
- * Tool steel probe
- Rapid installation, simple to adjust
- * Reliable and versatile solid-state output
- Offers new control input options

	,			/				
Model	Α	В	С	D	E	F	Probe Travel	
HPPA-08-25-03	75.6 (2.98)	25.4 (1.00)	M8 x 1				Maximum: 1.93 (0.076)	
HPPA-08-50-03	99.6 (3.92)	50.8 (2.00)	to a depth of			11.1	Activation depends on sensors' range, typically	
HPPA-08-75-03	126 (4.96)	76.2 (3.00)	20.0 (0.79)	M8 x 1		(0.44)	0.13 (0.005) to 0.25 (0.010). For best results, use shielded sensor	
HPPA-08-100-03	150 (5.91)	102 (4.00)	(0.70)	3.18			with a range of (S _n =1mm).	
HPPA-12-25-03	75.6 (2.98)	25.4 (1.00)			(0.125)			
HPPA-12-50-03	99.6 (3.92)	50.8 (2.00)					Maximum: 1.93 (0.076) Activation: depends on sensors' range, typically	
HPPA-12-75-03	126 (4.96)	76.2 (3.00)	M40 4					
HPPA-12-100-03	150 (5.91)	102 (4.00)	M12 x 1 to a	M10 v 1		15.8		
HPPA-12-25-06	75.6 (2.98)	25.4 (1.00)	depth of 18.0 (0.71)	M12 x 1		(0.62)	0.13 (0.005) to 0.38 (0.010). For best results, use shielded sensor	
HPPA-12-50-06	99.6 (3.92)	50.8 (2.00)	(0.71)		6.35		with a range of (S _n =2mm).	
HPPA-12-75-06	126 (4.96)	76.2 (3.00)			(0.250)			
HPPA-12-100-06	150 (5.91)	102 (4.00)						
- A -		-	7.	7	Notes:	-	-	

- 1) Damage to both probe and sensor may result if specified maximum probe travel is exceeded.
- **2)** Standard probe requires 252grams (9oz.) for sensor activation. Optional "heavy" spring rate requires 1120grams (40oz) to activate sensor (add an "H" to end of model number).
- 3) For use with shielded type proximity sensors only.
- 4) Thread sensor into probe only until proper "On/Off" triggering is achieved, do not thread sensor in fully or damage will occur.
- 5) Custom lengths and diameters are available. Call for quote.

CONTACT SENSOR PLUNGERS

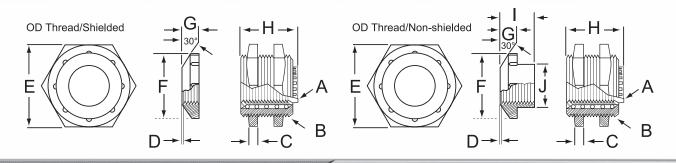
Heat-treated Stop Screws Create Heavy-duty Solid State Switch Features

- Available in 8, 12 and 18mm screw diameters with a wide variety of lengths
- * Heat-treated alloy steel construction
- * Mix & match with various sensors
- * Optional ball-end piston & spring rates
- * Stop travel and sense with a single device
- * Versatile outputs using any shielded sensor
- * Isolates sensor from impact damage

				,	,			
Model	Α	В	С	D	Е	F	G	Diagram
HBSA-08-25-08	M8 x 1	25.0 (0.98)	M8 x 1	3.16	5.84	6.26	Mounting Nut: 12.8 (0.50)	F-G-
HBSA-08-50-08	IVIOXI	50.0 (1.97)	M12 x 1	(0.12)	(0.23)	(0.24)	Sensor Hex: 11.0 (0.43)	⊗E- D₁
HBSA-12-25-12		25.0 (0.98)	M8 x 1		9.40 (0.37)	5.94		
HBSA-12-50-12	M12 x 1	50.0 (1.97)	or M12 x 1	(1 (1 4.32			15.7	
HBSA-12-75-12	IVITZXT	75.0 (2.95)	or			(0.23)	(0.62)	F B
HBSA-12-100-12		100 (3.94)	M18 x 1					A
HBSA-18-25-18	M18 x 1	25.0 (0.98)	M8 x 1	or 2 x 1 or	6.36 (0.25)			31.8
HBSA-18-50-18		50.0 (1.97)	or M12 x 1				.,,, 1	Rounded Piston Dimensions
HBSA-18-75-18	WITOXI	75.0 (2.95)	or					
HBSA-18-100-18		100 (3.94)	M18 x 1					5.62 8.96 (.221) 8.96 (.353)
Part Number Le	gend							(.353) (.353)
				BSA	- XX - >	(x - xx	- X	Application
Barrel Barrel	·	mension "A" — mension "B" —						Shown below, a BSA is used as a reliable and rugged stop for a linear slide unit. Accurate and easy adjustments to end of stroke positions are possible using a standard, shielded, prox sensor:

"R" for rounded piston (8 & 12 only) -

CUSHIONED SENSOR MOUNTS

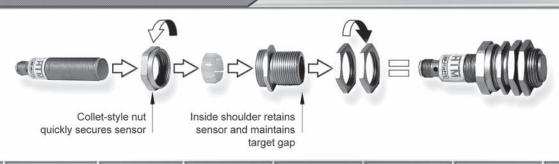


Spring-loaded Sensor Protection Features

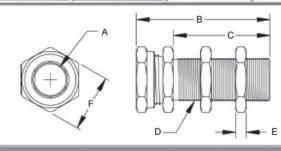
- * Spring-loaded housing mechanism
- * Plastic caps for shielded and unshielded sensors
- * Stainless Steel or anodized aluminum
- * Reduces downtime and replacement expenses
- * Reduces abraision and impact damage
- * Speeds sensor installation and setup times
- * Reduces spare sensor inventories

Models	Α	В	С	D	E	F	G	Н		J	K	Notes
HSN-08	M8	M16	3.10	0.25	22.0	15.2	5.33	22.1	N.	/A	8.89	Model numbers with an "N" after the sensor
HSN-08N	x1	x1.5	(0.12)	(0.01)	(0.87)	(0.60)	(0.21)	(0.87)	9.51 (0.37)	11.0 (0.43)	(0.35)	thread size are for non-shielded sensors.
HSN-12-LP	M12	M18	4.06	0.51	24.0	22.9	6.35	21.1	N.	/A	12.1	Caps are plastic, housings are anodized aluminum.
HSN-12N-LP	x1	x1	(0.16)	(0.02)	(0.95)	(0.90)	(0.25)	(0.83)	17.3 (0.68)	14.7 (0.58)	(0.48)	For stainless steel mounts, add "SS" to the end of the model number (except for LP
HSN-18	M18	M30			35.8	29.7	8.38	29.7	N.	/A	12.4	
HSN-18N	x1	1.5	5.10	0.76	(1.41)	(1.17)	(0.33)	(1.17)	17.8 (0.70)	23.9 (0.94)	(0.49)	models which are only available in stainless steel and do not
HSN-30	M30	M47	(0.20)	(0.03)	51.0	43.7	7.62	37.3	N.	/A	14.5	require the "SS".
HSN-30N	x1.5	x1.5			(1.72)	(1.72)	(0.30)	(1.47)	22.9 (0.90)	38.6 (1.52)	(0.57)	

Dimensions

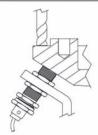


QUICK RELEASE COLLARS



Quickly and Securely Install Sensors with a Simple Twist Features

- * Collet-style locknut secures sensor
- * Integral stop shoulder maintains target gap
- * 8,12,18 and 30mm sizes
- * Short & long barrel lengths
- * Housing protects sensor from physical impact
- * Fast sensor change-out with no adjustment needed
- * PTFE coated models repels weld spatter


Models	PTFE Coated	Α	В	С	D	Е	F
HQT-08	QT-08-T	8.18	32.4 (1.28)	17.5 (0.69)	M12 x 1	3.85	16.9
HQT-08L	QT-08L-T	(0.32)	48.0 (1.93)	34.0 (1.34)	IVITZ X T	(0.15)	(0.67)
HQT-12	QT-12-T	12.1	33.7 (1.34)	19.5 (0.77)	M16 x 1	4.01	21.8
HQT-12L	QT-12L-T	(0.48)	44.8 (1.76)	30.0 (1.18)	WITOXI	(0.16)	(0.86)
HQT-18	QT-18-T	18.1	38.5 (1.52)	20.0 (0.79)	M24 x 1.5	4.95	30.0
HQT-18L	QT-18L-T	(0.71)	58.0 (2.28)	40.0 (1.57)	1VIZ4 X 1.5	(0.19)	(1.18)
HQT-30	QT-30-T	30.1	35.0 (1.50)	20.0 (0.79)	M36 x 1.5	6.13	41.0
HQT-30L	QT-30L-T	(1.19)	58.0 (2.28)	40.0 (1.57)	1VIOU X 1.5	(0.24)	(1.61)



Smart Rest Pad

Use Quick Release Collars as a "smart rest pad" for tooling and fixturing. With sensors protected by Quick Release Collars you

can rest castings or work pieces right on your sensors. Quick Release Collars can take the load and adjustments are easy via the threaded housing. Sensors confirm part positioning to initiate machining, welding or other control cycles.

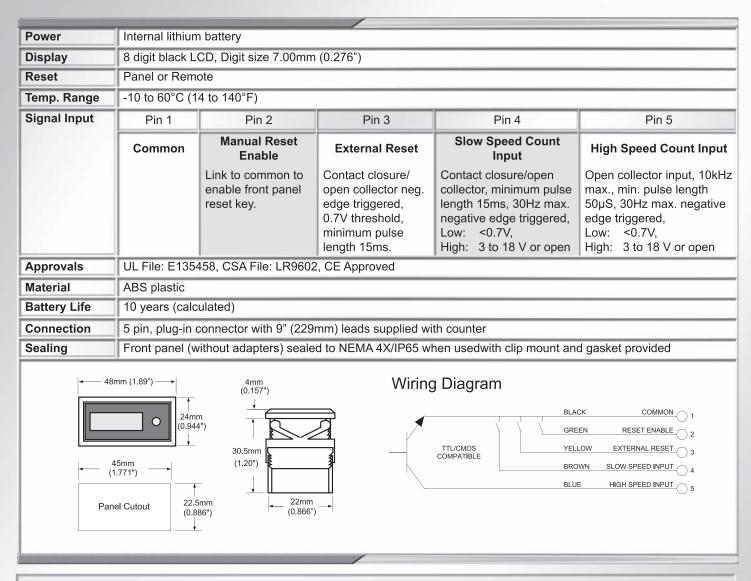
SENSOR FACE CAPS

Protect Sensors From Abrasion Features

- * Wide variety of protective materials
- * For shielded and non-shielded sensors
- * Reduces or eliminates abrasion damage
- * Lower downtime & sensor replacement costs
- * Beveled and designed for use with our Spring-loaded Mounts (see page 6)
- * Replace the cap, not the sensor

End Nose	Caps						
Model	Α	В	С	D	E	F	EN-xx
HEN-08	M8 x 1	15.2 (0.60)	5.28 (0.21)	0.38	6.45	NA	For Shielded Sensors
HEN-08N	INIO X 1	14.5 (0.57)	5.08 (0.20)	(0.015)	(0.25)	9.50 (0.37)	○B (D
HEN-12	M12 x 1	24.4 (0.96)	6.35 (0.25)	0.76	11.4	NA	A
HEN-12N	IVITZ X T	22.9 (0.90)	6.35 (0.25)	(0.30)	(0.45)	17.3 (0.68)	EN-xxN For Non-shielded Sensors
HEN-18	M18 x 1	31.3 (1.23)	8.38 (0.33)	0.76	17.5	NA	F F
HEN-18N	WITOXI	34.0 (1.34)	8.38 (0.33)	(0.30)	(0.73)	17.8 (0.70)	ěE
HEN-30	M30 x 1.5	43.7 (1.72)	7.62 (0.30)	1.02	29.2	NA	ОВ
HEN-30N	1000 X 1.0	44.5 (1.75)	7.87 (0.31)	(0.04)	(1.15)	22.9 (0.90)	A

Sensor Caps				
Model	Α	В	С	D
HSC-12-D	M12 v 1	12 × 1	8.90 (0.35)	0.89
HSC-12N-D	M12 x 1	(0.58)	15.2 (0.60)	(0.035)
HSC-18-D	M18 x 1	24.1	8.90 (0.35)	1.14
HSC-18N-D	IVIIOXI	(0.95)	17.8 (0.70)	(0.045)
HSC-30-D	M30 x 1.5	38.1	9.90 (0.39)	2.03
HSC-30N-D	1VI3U X 1.5	(1.50)	25.4 (1.00)	(0.08)
				/

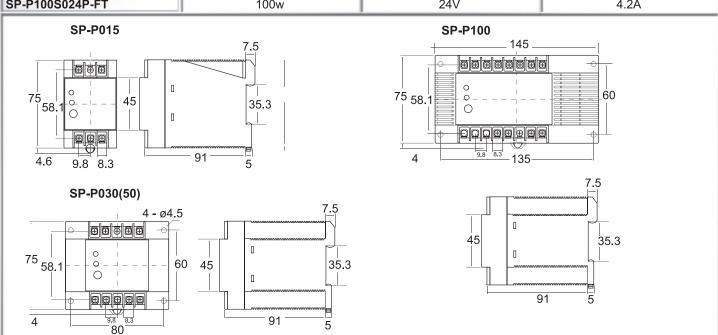

MINIATURE LCD COUNTER

Call: 800-644-1756

Miniature, Low Cost, LCD Electronic Counter Features

- * UL, CSA listed, CE certified
- * Meets NEMA 4X and IP65 ratings
- Long life lithium battery
- * 10 kHz Count Speed
- Plug-in adapter with terminal block and AC pulsing (option, HC-8-AC/DC)
- * Slow speed for contact closures
- High speed input for sinking inputs from a maximum of 18 VDC without module

POWER SUPPLIES



Enclosed Switching Power Supplies

Features

- * Multiple output terminals each for positive and negative
- 2 mounting possibilities (DIN rail and pannel)
- * LED lights up to indicate output voltage drop
- * Wide range voltage input (AC 110-220V)
- * EMC Standards: EN61000-4-2,3,4,5 EMI Standards: IEC-1000-3-2,3,FCC class B

Models with low voltage output LED indicators									
Model	Capacity	Output Voltage	Output Currrent						
SP-P015S012P-FT	45	12V	1.2A						
SP-P015S024P-FT	15w	24V	0.6A						
SP-P030S024P-FT	30w	24V	1.3A						
SP-P050S024P-FT	50w	24V	2.1A						
SP-P100S024P-FT	100w	24V	4.2A						

REFLECTORS

SENSOR SOLUTIONS MADE SIMPLE

PROXIMITY

Wide Variety At Low Prices Long Range Metal Faced Weld Field Immune Miniature Proximity

LASER SENSORS

Diffuse
Push Button Set-up
Retro-reflective
Through Beam
Temperature Sensors

SAFETY LIGHT CURTAINS

Category 4 Safety
Category 2 Safety
Finger Protection (14mm)
Hand Protection (30mm)
Body Protection (Access)

CABLES & BOXES

M12 Micro & AC 1/2 20 M8 Pico & 7/8" x 16 Mini Double Ended Cables Distribution Boxes

PHOTOELECTRIC SENSORS

Through Beam
Retro-reflective
Diffuse / Distance / Contrast
Background Suppression
Polarized / Clear Object

SENSOR ACCESSORIES

NPN / PNP Sensor Tester Mounting Brackets Spring Mounts Contact Adapters Connectors

WWW.HTMSENSORS.COM

8651 Buffalo Avenue, Niagara Falls, NY 14304 (800) 644-1756 Fax: (888) 283-2127 www.htmsensors.com / service@htmsensors.com